If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2+2p-135=0
a = 1; b = 2; c = -135;
Δ = b2-4ac
Δ = 22-4·1·(-135)
Δ = 544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{544}=\sqrt{16*34}=\sqrt{16}*\sqrt{34}=4\sqrt{34}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-4\sqrt{34}}{2*1}=\frac{-2-4\sqrt{34}}{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+4\sqrt{34}}{2*1}=\frac{-2+4\sqrt{34}}{2} $
| 0.5p^2+2p-135=0 | | 65-6x=17 | | -4x²+16x+128=0 | | 500-x=73.6÷1000x | | (x-2)^2=-7 | | X²-x=-160 | | 40+7•x=54 | | 18=2(4x+5) | | 2(x+3)=-2x+26 | | 2(3x-4)=46 | | x+10=5x−2 | | 31x-1.91x2=16x+6 | | 8-2x=2x+2 | | 9x-(2x+5+x2)-7(x+5)=-x2+5x-(3x-8) | | S=17-0.008x | | E^b=14 | | 2x/2+2x+3x-300=6300 | | 3(2x-1)=4((3x-4) | | 4k=-6k | | 2.5=0.75+7x | | 2.5=0.75x7x | | 5−3p=p+5 | | 3x+2=7−2x | | x+7=5x−1 | | 6a-5=35+a | | T=3.5n+5×4 | | 2x+5=3x−1 | | 3x+8x-14=x | | 3(7x-40=93 | | 12-4/5(w+15)=4 | | -x/12=-2 | | 5x+-19=4x+27 |